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Abstract: The ligand-gated ion channels and seven transmembrane domain receptors are the greatest families of trans-

membrane receptors (TMR) expressed in mammalians and the major target of current available drugs. Recently, boron 

containing compounds (BCC) have shown capability of acting as ligands on these targets. This mini-review is focused on 

the description of BCC that target TMR which were evaluated under experimental models. The results in experimental 

models are related with the theoretical interaction studies of these ligands on the target proteins as 3D-models in order to 

explore the biological effects of BCC in molecular detail. 
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INTRODUCTION 

 Ionotropic receptors (ligand-gated ion channels) and me-
tabotropic seven transmembrane domain receptors (7TM; 
also known as G-Protein Coupled Receptors, GPCR) to-
gether represent the great majority of transmembrane protein 
receptors expressed in mammals, and they are the major tar-
get of most currently available drugs [1,2]. Many strategies 
for improving the interaction between drugs and these recep-
tors have been employed, finding ligands with high affinity 
and selectivity [2]. Among the ligands currently being 
sought for this purpose are boron containing compounds 
(BCC), and recent efforts are yielding a great quantity of 
new molecules [3]. 

 BCC have been used as antiseptics, antibiotics, cosmetics 
and insecticides for more than a century [3-6]. In the last few 
decades BCC have been sought as a means of targeting bio-
molecules involved in cancer therapy, including non-specific 
target applications, such as Boron Neutron Capture Therapy 
[4,7,8], and direct selective action on some cancer targets 
[9].  

 Although some objections have been raised by research-
ers in relation to the toxicological profile of some BCC [10], 
experimental and clinical studies have shown that BCC can 
be administered in adult humans at high doses without toxic 
effects [10-13]. Moreover, some BCC are marketed today as 
proteosome inhibitors and antifungal drugs [4]. 

 In the majority of currently known applications, BCC 
interact with an enzyme, and the presence of boron atom in  
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some compounds has improved the ligand-enzyme interac-
tion [6,14]. Recently, new BCC have been synthesized and 
tested as ligands on ionotropic or metabotropic transmem-
brane receptors (TMR). Several studies have shown some 
special characteristics of these ligands compared with similar 
compounds without a boron atom in their structures [4,6]. 
These features can give BCC some advantages, in terms of 
pharmacodynamics and pharmacokinetics, in drug develop-
ment [4]. 

 Nowadays, there is increasing interest in a detailed explo-
ration of drug-receptor interactions at the atomic level. The 
growing availability of 3D models for TMR allows for new 
structural perspectives of the recognition of ligands by these 
receptors, which can lead to new proposed chemical struc-
tures and methodologies for improving ligand-TMR medi-
ated effects [15,16]. Accordingly, the aim of the current con-
tribution is to review the reports of BCC that target TMR, 
focusing on results from experimental models and insights 
from docking studies done with TMR-3D models. 

BIOLOGICAL EFFECTS OF SOME BCC 

 To the best of our knowledge, sodium borate (also called 
borax) and boric acid were the first BCC for which biologi-
cal activity was studied [10]. Today boronic acid, boronate 
and borane derivatives have all been shown to have effects in 
biological systems [3,4,17]. Moreover, the more than 20 
complexes reported in the protein data bank are direct evi-
dence that BCC can target enzymes or nuclear receptors 
[18]. However, in most studies the evidence of BCC-TMR 
interactions is only indirect, based on inferences from ex-
perimental results and clinical observations. Only in a few 
very recent studies have new approaches been applied that 
have the capability of providing direct evidence of interac-
tions between BCC and TMR. 
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EFFECTS OF BCC THAT INTERACT WITH 

IONOTROPIC RECEPTORS 

 Some reports have strongly suggested that there is an 
interaction of BCC with ionotropic channels, but direct ex-
perimental evidence is still lacking. In the current contribu-
tion we focus on such interactions, specifically those that 
disrupt the basal membrane potential or action potential 
mechanism and thus trigger consequences in elaborate and 
miscellaneous cellular pathways or processes, including 
muscle contraction, secretion, neuronal processing and 

transmission, fertilization, cell division, migration, differen-
tiation, proliferation, metabolism and death [4,6]. 

 Among the first works suggesting interactions between a 
BCC and ionotropic receptors [19-21], Changeux et al. [19] 
reported the binding of p-trimethylammonium benzene dia-
zonium fluoroborate (TDF) to acetylcholine ionotropic re-
ceptors as a tool for labeling the latter (Fig. 1). It was sug-
gested that this compound binds by means a covalent bond 
with the tyrosine, histidine and lysine side chains of this pro-
tein, which if true would give TDF the capability of behav-
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Fig. (1). Some boron containing compounds which have shown effects on ionotropic or metabotropic receptors and the endogenous ligands 

(labels in bold letters) of these receptors. 
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ing as an irreversible binding ligand in this context [19]. 
Later, studies confirmed that TDF and p-Nitrobenzene dia-
zonium fluoroborate (NDF), act as potent inhibitors of the 
carbamylcholine-induced depolarization and of acetylcho-
linesterase by forming covalent bonds with the acetylcholine 
receptor and probably with acetylcholinesterase at the active 
site [22,23]. Also some NDF analogues have shown activity 
as reversible or irreversible acetylcholine receptor-inhibitors 
[22]. Moreover, specific cysteine and tyrosine residues have 
been implicated in recognition by mutational and binding 
studies [24,25]. In spite of these findings, the direct interac-
tion of these compounds (and related compounds like p-N,N-
dimethylamino.phenyldiazonium fluoroborate) with acetyl-
choline receptors is poorly understood. 

 Another known target for BCC is the inositol 1,4,5-
triphosphate receptor (IP3R), an ionotropic channel located 
in the membrane of sarcoplasmic reticulum that increases the 
release of intracellular calcium [26]. The regulation of IP3R 
activity has been studied in relation to 2-Aminoethoxy-
diphenyl borate (2-APB), considered a membrane-permeable 
inhibitor of IP3R [26,27], well-known for its activity on 
transient receptor potential channels (TRP), which are non-
selective cationic channels [27-30].  

 The capacity of 2-APB to inhibit the release of calcium 
affects the function of several systems: limitation of sponta-
neous activity in mouse embryonic stem cell-derived car-
diomyocytes [31], inhibition of cardiomyocyte hypertrophy 
[32], and regulation of signaling pathways in cardiac fibro-
blasts [33]. Also, there are reports of the effects of this BCC 
on ionic channel regulation in rat neurons [34-36], on 
smooth muscle (or related) cells [37-39], on mouse pancre-
atic beta cells, and as an inhibitor of cell proliferation and 
apoptosis-induction of gastric cancer cells from malignant 
ascites [40].  

 Thus, there are potential applications of 2-APB in several 
medical areas. Recently, Xiao et al. have demonstrated the 
effect of 2-APB on IP3R in atrial muscle cell lines under 
conditions of ischemia or cholinergic activation. They have 
proposed 2-APB has potential application in some kinds of 
atrial fibrillation [41]. Additionally, Szatkowski et al. have 
described the antiproliferative effect of 2-APB on the MCF-7 
human breast cancer epithelial cell line [42].  

 Other BCC, as phenylborinic acid, poly(arylhydroxy-
borane), and their respective esters, have been mentioned as 
regulators of intracellular calcium concentration. These 
compounds inhibit the release of calcium induced by inositol 
1,4,5-triphosphate induced calcium release and/or capacita-
tive Ca

2+
 entry into cells, thus controlling intracellular cal-

cium concentration [43]. Also, aliphatic amine carboxybo-
ranes, such as n-C18H37(CH3)2NBH2COOH, the phosphine 
carboxyborane Ph3PBH2COOH, the copper(II) complex 
Cu2(Me3NBH2CO2)4.2Me3NBH2CO2H and tetraphenylboron 
were shown to reduce calcium efflux and to increase calcium 
influx into both the osteoblastic cells and the pup bones of 
mice, demonstrating the capacity of these compounds to act 
as preventive agents for osteoporosis. Even though the 
mechanism is not clear [44,45], the direct interaction with 
calcium channels and regulation of the production and re-
lease of chemical mediators initiating bone loss have been 
suggested [46,47]. 

 Another ionotropic target for BCC has been described by 
our workgroup. We have obtained boron-containing amino 
acid derivatives, specifically glutamate analogues, among 
which are the stereoisomers of Trujillon (a BCC with a struc-
ture related to 2-APB; see Fig. 1). These stereoisomers have 
been shown to increase spontaneous globus pallidus neu-
ronal activity of the anesthetized rat. This capability is 
stereoselective, evidence by the fact that (+)-(S)-Trujillon is 
more effective than its enantiomer form [48]. Experimental 
results indicate that increased neuronal activity is mediated 
by NMDA-glutamate receptors (Fig. 2) Furthermore, compu-
tational simulations show possible interactions of (+)-(S)- 
Trujillon with one of these glutamate receptors [49]. The 
binding mode is analyzed later in this review. 

 Yet another BCC-ionotropic receptor interaction was 
recently reported by Henderson et al., who studied the dose 
dependent decrease of calcium release from ryanodine recep-
tor sensitive stores, and the regulation of cancer cell prolif-
eration by boric acid (a BCC in current clinical abandon-
ment). Moreover, they linked levels of boric acid in the 
blood with a decreased risk of prostate cancer [50]. 

EFFECTS OF BCC ON 7TM RECEPTORS 

 The study of the effects of the interaction between BCC 
ligands and 7TM receptors is more recent than that of the 
interaction of these compounds with ionotropic receptors. At 
beginning of this century Bezuglov et al. [51] developed 
boron containing derivatives of dopamine, serotonin and 
acetylcholine. Compared to the native neurotransmitters, 
these BCC have greater lipophilic properties, allowing them 
to more readily penetrate the blood-brain barrier and the cy-
toplasm of embryonic cells. Due to the fact that their effects 
were similar to those induced by arachidonic acid derivatives 
acting as agonists on serotonin 7TM receptors, or to antago-
nists on nicotinic acetylcholine ionotropic receptors, it was 
suggested that these BCC interact with intracellular receptor 
components of prenervous serotoninergic or cholinergic sys-
tems. However, the mechanisms that caused the effects me-
diated by these neurotransmitters were not clarified [51]. 

 Fifteen years ago some BCC were designed as 7TM re-
ceptor ligands. Among these, [(+/-)-7-chloro-8-hydroxy-3-
[6-[(N,N-dimethylamino)hexyl]-1-phenyl-2,3,4,5-tetrahydro-
1H-3-benzazepine cyanoborane, a N-alkylaminoben-
zazepine, has shown activity as a D1 dopamine receptor an-
tagonist (Ki of 142 nM in a radiolabelled binding assay using 
[3H]-SCH 23390). However, the role of a boron atom in N-
alkylaminobenzazepines is not necessarily important, as the 
boron-free N,N dimethylamino derivative had a Ki of 49 nM 
on the same receptor [52]. 

 In purine receptors, another type of 7TM, Nahum et al. 
[53] reported that adenosine 5'-O-(1-boranotriphosphate) 
derivatives function as selective P2Y1 receptor agonists, 
demonstrating a diastereoselective phenomenon in activation 
[54]. 

 Our workgroup has recently reported the effects of two 
BCC that are derivatives of salbutamol, a well-known 2-
adrenoceptor agonist [55,56]. The 2-adrenoceptor is a 7TM 
implicated in the treatment of asthma and other pulmonary 
diseases. These two BCC have greater affinity than salbuta-
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mol on the guinea pig 2-adrenoceptor, judging by the 
greater relaxing effect on guinea pig tracheal rings [55,56]. 
Moreover, one of these compounds has higher efficacy than 
salbutamol in bronchodilator action [56]. The direct interac-
tion of these BCC with 2-adrenoceptors is strongly by the 
fact that because propranolol and ICI118,551, which are 
well-known 2-adrenoceptor antagonists, shift the BCC 
curves to right in a concentration-dependent manner [55,56]. 

 Other synthesized BCC are derivatives of endogenous 
ligands for some 7TM, as choline, aminoacids or nucleo-
sides. These derivatives have shown themselves to be effec-
tive antineoplastic-cytotoxic, anti-inflammatory and/or hy-
polipidemic agents, and their mechanisms of action have 
often been associated with the disruption of enzymatic activ-
ity in related-processes [57-59]. Also some fluorescent-BCC 
have been employed for identifying 7TM distribution in tis-
sues [60]. 

A MOLECULAR MODELING OF THE BCC-TMR 

INTERACTION 

 Recent data allow us to study the BCC-TMR interactions. 
The X-ray crystal structures for some of these targets have 
been elucidated for both ionotropic and metabotropic recep-
tors [61,62]. This information about family A of the me-
tabotropic receptors could be particularly useful since are 
often considered as drug-targets. Another important source 
of data are homology modeling techniques, which allow for 
the construction of a specific receptor model based in the use 
of the available structures as templates.  

 Also, boron atom parameters for computational simula-
tions have been established, and have been applied in some 
works in which the role of boron has been studied in target-
ing some enzymes [14].  

 Recently, we have explored the BCC-TMR interaction 
mode by applying the new data. Thus, we have found some 

BCC with greater affinity on the NMDA-glutamate and 2-
adrenoceptors than their respective precursors [48,49,55,56]. 
This greater affinity of BCC is related to the interaction be-
tween the boron atom (or atoms in gem position to boron) 
with the polar side chains of amino acids, the latter are often 
important in the recognition of endogenous ligands by 7TM 
[55]. 

 For the glutamate –ionotropic- receptor, no direct interac-
tion of the boron atom was visualized for one BCC (S-
Trujillon), probably due to the hindrance effect of moieties 
linked to it [49]. The nearest residue was lysine located in 
the ligand binding core reported for glutamate in the 
NAMD-NR2 [62]. The amine of the lysine side chain and 
the tetracoordinated boron atom of S-Trujillon contain oppo-
site charges which could be important in the increased affin-
ity found theoretically and experimentally [49], see Fig. (3). 

 In the case of compounds targeting the 2 –metabotropic- 
adrenoceptor, the importance of a boron atom is clear. 
Interactions of BCC compounds with conserved amino acids 
in the fifth transmembrane domain (serines and tyrosine resi-
dues implicated in receptor activation) of 7TM receptors [55] 
were key to affinity in theoretical simulations [55,56]. The 
atoms of the ligand and receptor that are involved in these 
interactions often had opposite partial electrostatic charges 
and/or formed hydrogen bonds [55,56]. We found a greater 
calculated affinity of BCC on other 7TM targets compared to 
similar structures without a boron atom (unpublished data). 
Thus, the addition of a boron atom in the compounds leds to 
its interaction with polar residues included in binding clus-
ters of TMR, which appear to be advantageous for recogni-
tion, and in some cases for activating the receptors [55].  

 This advantage could be related to the similarities and 
differences between boron and carbon. Important similarities 
include the nearness of boron to carbon in the periodic table 
as well as the boron capability to form compounds of an ap-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Local application of (+)-(S)-Trujillon increases the basal firing of globus pallidus neurons by activating NMDA receptors. A and B 

show two spike rate histograms of pallidal neurons. D-AP5, an NMDA antagonist, diminished the increased in the spiking evoked by (+)-(S)- 

Trujillon.  
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propriate size for targeting TMR-binding sites [4]. Addit-
tionally, there are similarities (and some differences) in the 
geometry of boron and carbon [63].  

 In contrast, the cluster organization of BCC could give 
them advantage over carbon-based compounds [63,64]. 
Whereas, carbon is often in four-coordinated form in bio-
logical compounds and drugs, boron is found as a triva-
lent/tetravalent metalloid. The three/four-coordinated form 
could be advantageous in relation to the basic or acid proper-
ties of the binding pocket surface in the targeted receptor. 
This different coordinated boron atom is relative easy to 
identify by 

11
B Nuclear Magnetic Resonance, where the 

three-coordinated (acid) forms have a shift ranking from 
14.2 to 22.5 ppm [65], and the four-coordinated (basic) 
forms have a shift ranking 0 to 5.94 ppm [48,55,56,66-68]. 

 Also, while carbon forms a wide range of organic com-
pounds, boron forms oxides and salts, and thus behaves simi-
lar to a metal. However, as with non-metals, it also forms 
acids (such as boric acid, H3BO3) [4]. Nevertheless, unlike a 

metal it has strong affinity for electrons owing to its vacant 
-orbital. This makes boron, and BCC, electron-deficient, 

which leads to rather unusual structures. In some of these 
structures the boron atom in a four-coordinated form shows a 
negative (electron rich, see Fig. 4) partial charge, which 
could be important in the non-covalent interactions with side 
chains of residues that are conserved in the binding pockets 
of TMR [69].  

 Also, we should keep in mind that these features of boron 
are not only advantageous when targeting TMRs, but also in 
relation to intracellular targets such as enzymes, on which 
BCC frequently act as inhibitors [3,4,6]. Based on crystal 
complexes that have been obtained, the role of boron appears 
to implicate both non-covalent and covalent interactions with 
(charged or uncharged) polar residues of proteins [70-72]. 

 So, several functions are disrupted by BCC-enzyme in-
teractions, among these those related to anabolism or catabo-
lism [6]. We have described a possible mechanism of catabo-
lism-evasion by BCC that target metabotropic receptors, 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Interactions of BCC on transmembrane receptors. Well-known segments involved in ligand recognition of the metabotropic 

human D2 Dopamine receptor (left) and the NMDA-NR2A glutamate ionotropic receptor (right) in cartoon representation. Amino acids 

which have shown interaction with boron atoms (the observed position is marked with an asterisk) of some BCC are in bond label represen-

tation.  

 

 

 

 

 

 

 

 

Fig. (4). The superimposition of two theoretically optimized (by the semi-empirical method AM1) putative dopamine and acid adducts 

shows the similar role and spatial disposition of boron and carbon in four-coordinated form (isosteric forms, on the left) and a common 

mechanism of interaction proposed between four-coordinated boron and amino acid of TMR is depicted on the right. 
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where there is an interaction with polar amino acids outside 
of the catalytic site of some enzymes [73]. However, the 
enzyme-mediated catabolism of boron-carbon bonds has not 
been clearly proved. These features could prove long-action 
in some BCC targeting TMR. 

 Finally, the unique hydrophobic behavior of some BCC 
should be emphasized (often greater than carbon containing 
compounds equivalents) [4]. This hydrophobic behavior has 
been employed in drug design in order to reach citosolic tar-
gets [74-77]. On the other hand, the hydrophilic behavior of 
some other BCC (including those BCC with the tetracoordi-
nated boron and/or hydrophilic moieties exposed) have led to 
their proposed inclusion in liposomal formulations in order 
to increase their bioavailability or improve their capacity to 
reach intracellular targets [78].  

 In conclusion, in the present contribution we present data 
showing the utility of BCC as ligands for transmembrane 
receptors, which are in turn the most attractive targets for the 
pharmaceutical industry. Some features of BCC could give 
them potential advantages over the drugs currently available. 
The pharmacodynamic, pharmacokinetic and toxicological 
profiles of these compounds should be completed for con-
solidating an opportunity in drug development and to evalu-
ate their usefulness. 
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ABBREVIATIONS 

2-APB = 2-Aminoethoxydiphenyl borate 

3D = Three dimensional 

7TM = Seven transmembrane domains receptor 

BCC = Boron containing compounds 

GPCR = G protein coupled receptor 

IP3R = inositol 1,4,5-triphosphate receptor 

NAMD-NR2 = Nicotine Amide Methyl D-Aspartate glu-
tamate receptor 2 

TMR = Ionotropic and Metabotropic Transmem-
brane receptors 
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